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Abstract-In the diffusion boundary layer approximation an exact analytical solution is obtained for the 
problem of unsteady convective mass exchange between a spherical droplet (bubble) and an arbitrary 
three-dimensional linear shear flow, with the unperturbed velocity field assigned by the symmetric shear 
tensor. The dependence of Sherwood number on time and Peclet number is established. A simple approxi- 
mate formula is presented for calculating the rate of unsteady mass exchange of droplets and solid particles 
with an arbitrary steady flow. The stationary problem of mass exchange between a droplet and a linear 
shear flow in the presence of the first-order volumetric chemical reaction is considered. An equation is 
suggested to compute the Sherwood number for a droplet or a particle of arbitrary shape and for any type 

of flow at large Peclet numbers over the entire range of reaction rate constants. 

1. INTRODUCTION 

UNSTEADY diffusion to a spherical droplet (bubble) in 
a developed translational Stokes flow at large Peclet 
numbers was considered in refs. [ 1,2]. A similar prob- 
lem of convective mass and heat transfer for potential 
flow of an ideal fluid about a droplet was studied in 
refs. [2, 31. In ref. [4] (see also ref. [5]) the solution 
was obtained to the problem ofunsteady mass transfer 
of a spherical droplet in an axisymmetric shear Stokes 
flow. 

Diffusion to a droplet in a translational Stokes flow 
in the presence of a first-order volumetric chemical 
reaction was examined in ref. (61. The problems of 
stationary mass transfer of a solid spherical particle 
[7] and a droplet [8] in three-dimensional translational 
flow were investigated. A comprehensive treatment of 
the results and methods of solution of corresponding 
problems, as well as a sufficiently complete bib- 
liography on the subject can be found in ref. [S]. 

The present study is the first to provide examples 
which ihustrate exact integration of three-dimensional 
non-stationary equations for a diffusion boundary 
layer. 

2. FORMULATION OF THE PROBLEM. 

THREE-DIMENSIONAL ANALOGUE OF THE 

STREAM FUNCTION 

Consider unsteady convective diffusion to the sur- 
face of a droplet (bubble) of arbitrary shape in a 
laminar viscous incompressible fluid Row. Assume 
that the main resistance to transfer is concentrated in 
the continuous phase. The method given below is also 
appropriate in the case of convective mass and heat 
exchange between a particle and an ideal fluid. 

Suppose that at the initial instant of time t, = 0 the 

concentration beyond the droplet is the same and 
equal to C,,, whereas when t, > 0, on the droplet 
surface there occurs a complete absorption of the 
substance dissolved in the fluid (i.e. the diffusional 
regime of reaction is realized which corresponds to 
zero concentration on the droplet surface). It will be 
considered that the Peclet number Pe = d/D is large 
as usual (here a is the characteristic size of the droplet 
(for example, radius), U the characteristic flow vel- 
ocity and D the diffusion coefficient). For simplicity, 
the flow field is assumed to be established and known 
from the solution of the corresponding hydrodynamic 
problem. 

To analyse the diffusion boundary layer, the local 
orthogonal curvilinear system of dimensionless coor- 
dinates <, 9, E. will be introduced which is fixed with 
respect to the droplet surface and streamlines [5, 81. 
Suppose that the vector of the normal to the droplet 
surface determines the direction of the unit vector e: 
(see Fig. 1). The direction of the fluid velocity vector 
at this point of the surface prescribes the direction of 
the unit vector e,. The unit vector e, is perpendicular 
to both e, and e,. In such a coordinate system the 
presentation v = {uc, v,,, 0) is valid for the fluid vel- 
ocity vector. To be specific, it is further assumed that 
the droplet surface is prescribed by the hxed value 
r = r,. 

Taking into account the fact that in the coordinate 
system chosen the continuity equation for incom- 
pressible fluid has the form 

where ga, g,,, gii are the metric tensor components. 
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NOMENCLATURE 

a characteristic size of droplet, bubble or si; mean Sherwood number in stationary 
solid particle (radius of a spherical problems with volumetric reaction 
particle) SL mean Sherwood number corresponding 

C* concentration in flow to steady mass exchange regime, 

Co concentration at the initial time instant lim,,, Sh 

C, concentration on the surface of droplet 53;, mean Sherwood number in the absence 
(particle, bubble) of volumetric reaction, lim,,, Sh 

C dimensionless concentration in non- r* time 
stationary problems, (C,- C,)/C, t dimensionless time, Ut,/a 

E dimensionless concentration in II characteristic flow velocity 
stationary problems with volumetric u, unperturbed translational flow velocity 
reaction, CJC, far from droplet 

D diffusion coefficient V fluid velocity vector 
Ez, E,, dimensional and dimensionless shear Q, u,+ tangential components of fluid 

tensor components velocity vector on droplet surface 
E,?, E, dimensional and dimensionless shear x, Cartesian coordinate system with origin 

tensor components in the Cartesian fixed at droplet centre (i = 1, 2, 3) 
coordinate system fixed with respect to Z time-like variable determined by 

i 
the principal axes of shear tensors equation (18), z(t, ‘1. i). 
function determining the stream function 
analogue, equation (6) 

get, gV,, gd metric tensor components Greek symbols 

9 third metric tensor invariant, gee g,,,, gii B ratio of dynamic velocities of droplet and 
I dimensionless integral (total) diffusional surrounding fluid (/3 = 0 corresponds 

flux onto droplet surface to a gas bubble) 

J: (E’E*)“2 = (p+E;*+E;*)“* 1, 1, 51 tl, 1. curvilinear coordinate system fixed 

Jl shear tensor invariants, equation (36) with respect to droplet surface and 

i dimensionless diffusional flux streamlines 
K first-order volumetric chemical reaction T dimensionless time, t/Pe = Dt,/a* 

rate constant $ three-dimensional analogue of function 
k dimensionless volumetric chemical (in plane and axisymmetric case is 

reaction rate constant, a’K/D identical with conventional stream 
Pe Peclet number, au/D function). 
r, 0, 4 spherical coordinate system with 

origin fixed at droplet centre 
Sh mean Sherwood number in non- Superscript and subscript 

stationary problems S quantities are taken on droplet surface. 

Then, continuity equation (1) which agrees with the 
requirement of the system integrability, is satisfied 
automatically. The integration constant is selected so 
that the function $ would transform into zero on the 
droplet surface at 5 = 5,. 

The surfaces $({, ‘I, i.) = const. are composed 
entirely of streamlines. The function tj is simple physi- 
cally, i.e. it is a three-dimensional analogue of the 

FIG. 1. Curvilinear orthogonal coordinate system fixed with stream function. In the plane and axisymmetric cases 
respect to the droplet surface and streamlines. it coincides with the conventional stream function. 

In dimensionless variables of the curvilinear coor- 
dinate system 5, q, 1 the equation of the unsteady-state 

The function J1({, q, 1) will be defined as the solu- 
diffusion boundary layer and also the corresponding 

tion of the system 
initial and boundary conditions have the form 

a* a* 9 
x=% -&=-v< G. 

J( > 
(2) 



Three-dimensional problems of unsteady diffusion boundary layer 1377 

r=O,c=O, (=&,c=l; <-+co,c+O (4) 

CO-C, wt. 
c=col t=- a ’ 

Pt+. (5) 

Here and hereafter the superscript ‘s’ means that the 
corresponding quantities are taken on the droplet sur- 
face at 5 = 5, ; g’ and g;( are known functions depend- 
ing only on two curvilinear coordinates q and i.; C, 
is the concentration in the flow. 

As usual, in deriving equation (3) the diffusion 
transfer along the droplet surface was neglected in 
comparison with that along the normal, and only 
higher order terms in the expansion of the metric 
tensor components were taken into account when 
5 + r, ; moreover, use was made of the relationship 
between the fluid velocity vector components and 
stream function analogue (2). 

Allowing for the condition of the droplet surface 
impermeability to the fluid, the fluid velocity com- 
ponents with 5 + 5, will be defined as 

1’; = (5-5,)0(l), u* = O(1). 

Therefore, due to equalities (2), the following rep- 
resentation is valid for the stream function analogue 
in the boundary layer : 

!b = (5-w-GL4. (6) 

In deriving equation (6), the following relations 
were taken account of: 

9:: = O(l), g,, = O(l), 9iA = WI 

which were valid near the droplet surface when r + 

5 I. 
For simplicity it is assumed below that in the flow 

region under consideration the inequality f > 0 is sat- 
isfied when 5 b C,. 

It should be noted that the third curvilinear coor- 
dinate enters into equation (3) only parametrically, 
therefore the dependence of the functions employed 
in the study on I is not further indicated. 

3. THE METHOD OF SOLUTION 

In the diffusion boundary layer equation (3) the 
change-over will be made from the variable 5 to the 
new variable 4, according to the equation 

c = $J(W (7) 

where the function JI is determined by equation (6). 
This will yield 

(8) 

The distribution of concentration is sought in the 
form 

c = c(C. z) (9) 

where z = z(t, PI, 1) is the new time-like variable found 

below in the course of problem solution. Substituting 
equation (9) into equation (8) one obtains 

Now, let the requirement be imposed that the func- 
tion z should satisfy the following first-order linear 
partial differential equation : 

(11) 

as well as the additional condition that 

t = 0, : = 0. (12) 

Then equation (10) is reduced to the standard heat 
conduction equation 

ac a5 
-=lr.. az CL- 

(13) 

The initial and boundary conditions for equation 
(13) follow from equation (4) allowing for equations 
(6). (7) and (12). and have the form 

z=o,c=o; <=o,c= I; ~+co.c+O. (14) 

The solution of problem (13). (14) is well known 

exp ( -.Y’) d?r. (15) 

The relation z = z(t, q) will now be found from 
equation (I 1) which is equivalent to the following 
system of ordinary differential equations : 

Integrating the first two and the last two equations 
(16) obtain the first integrals 

4s’ 
t- -dq=A,, 

s f 
z- Js’ 

glfdtl=& (17) 
.: 

where A, and A2 are arbitrary constants. Therefore, 
the general solution to equation (I 1) has the form (@ 
is an arbitrary function) 

z=j$fdv+@(t-j-+-+ (18) 

The explicit form of the function @is ascertained with 
the aid of condition (12). As a result, the following 
expression will be obtained for the variable z: 

dtt, w = t- 
s 
Jg' 
fdq (19) 

where the function T = T(w) is found from the equal- 
ity 
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The use ofequations (6). (7) and (15) for the dimen- 
sionless local diffusion flux on the droplet surface 
gives 

(20) 

For the dimensionless total diffusion flux on the 
droplet surface S = {t = 5,. 0 < ‘I ,< H, 0 G j. G A) 
one obtains 

/ Jg’ dr) di. 

g;:Jz 
Wa) 

In the two-dimensional case (a/sj. = 0) equation 
(21a) simplifies to 

@lb) 

Here the value A = 27t corresponds to the axisym- 
metric case and A = 1 to the plane case. 

4. FORMULAE FOR COMPUTING NEW 

VARIABLES AND DIFFUSION FLUXES IN 

THE SPHERICAL COORDINATE SYSTEM 

Usually the initial information on the flow field 
enables one to directly obtain only the distribution of 
fluid velocities near the droplet in a certain orthogonal 
fixed coordinate system <, 0, 4 fixed only with respect 
to its surface (and not to streamlines). Therefore, in 
the general case of a three-dimensional flow field it 
is first necessary to solve the auxiliary problem of 
determining the curvilinear coordinate system 5, 9, E. 
described previously and to find the expansion of the 
stream function analogue near the droplet surface (6) ; 
after that it is possible to use equations (IS), (20) and 
(21a) to calculate the basic characteristics of unsteady- 
state mass transfer. 

It will be shown in which way the diffusion fluxes 
and the functions f and z are calculated for a droplet 
(bubble) of spherical shape in the three-dimensional 
case. It will be assumed that the tangential com- 
ponents of the fluid velocity vector near the droplet 
surface are known 

Ct) = tie@, f#J), 1’4 = u,(B, 4) (r + 1). (22) 

Here the dimensionless spherical system of coor- 
dinates r, 0, 4 is used with the origin fixed at the 
droplet centre. The coordinate 5 and the metric tensor 
components (at < = 5,) are given by the formulae 

t=r-1; g:{ = l,g;, = l,g&, = sin’ 0. (23) 

The sought orthogonal curvilinear coordinates 
r) = ~(0, 4) and E. = ;.(e, 4) should by definition 
satisfy the relations 

v, = const. VII, (v, * Vj.) = 0 
_I 9 

v, = e,c,+e,c,, V = eB$ +e,L c. 
sin e 24 

Hence, there are the following first-order partial 
differential equations for q and E. : 

_I _ 

v L!L_*fl=o 
* i-e sm e Sf$ 

_I. q. 
o,!!+*E!=o. 

sin e &#I 

(24) 

(25) 

The dependence of the sought curvilinear coor- 
dinates r) and i. on the spherical coordinates 0 and rj 
will be determined by the first integrals of the charac- 
teristic equations 

c0 de = -sin Bo, dd (26) 

L‘# dO = sin Ocs d4 (27) 

which comply with equations (24) and (25). 
Assuming now the functions q = ~J(~,c#J) and 

i. = E(8.4) to be known, use will be made of the fact 
that the square of the length on the droplet surface is 
preserved during transition from the old, 8, 4, to the 
new, n, i. coordinate system 

d@+sin’ Bd@ =g;,, d$+g:, di.’ 

(28) 

Taking account of equations (24) and (25) and 
making some transformations, obtain from equation 
(28) the sought expressions for the metric coefficients 

g,,,, and g,, 

v; d?j -? (> 
.’  ̂

= sin2 05 c’1 
-2 

A = f 3 0 L.2 &#I 

Now substitute equation (6) into the first equation 
(2) on the right-hand side of which only the main 
expansion terms were retained for < + 5,. Further, 
allowing for the equality c, = Iv’I, the function f will 
be found which specifies the stream function analogue 

Js’ f=vJs;c. L' = cs = J(c;+c:). (30) 

In the integrals, which determine the time-like vari- 
able c, equation (I@, and which appear in equations 
(I 7)-(2 1 a), the change-over should be made from the 
integration variable q to the spherical coordinate fI (or 
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4) using the following relations, which are valid at 
E. = const. : 

Jg’,,,d~=~dB=sine~d+ (31) 
e c 0 

These relations are derived from equation (28) tak- 
ing into account the fact that the equality i. = const. 
is fulfilled on the integral curves of the characteristic 
ordinary differential equation (27) which conforms to 
the partial differential equation (25). 

Using equations (29)-(31) for the integrals in equa- 
tion (18), obtain 

{~~~(~~‘}~d~=~{sin~~~~~~*2dm. (32) 

Here, {F}, d$ (or {F}, d0) in the integrands means 
that the function F(B, 4) is written in terms of the 
variables E. and 4 (or 1 and 0) with the aid of the 
relation 1 = I.(& 4) and in integration i is considered 
to be a parameter. 

The Jacobian corresponding to the transition from 
the coordinates r~, ,I to 0, 4 is calculated from the 
equation 

ah 4 i vai 1 c di. -=---=____ 
a(64) Jg:, 5 a+ Js;, 0) 50. 

Transforming in integrand (Zla) to the spherical 
coordinates 0, 4 allowing for equations (25), (29), 
(30), the following equation will be obtained for com- 
puting the integral diffusion flux onto the droplet sur- 
face : 

Thus, the calculation of the most significant mass 
transfer, i.e. of the integral flux (or of the mean Sher- 
wood number) is performed in four steps. First, the 
components of fluid velocity on the droplet surface 
are determined, equation (22). Further, the general 
solution is found for characteristic equation (27), the 
substitution of the arbitrary integration constant of 
which by i yields the relation i = i-(0, 4). As the third 
step, the variable z, equation (18), is calculated with 
account being taken of equations (19) and (32) (recall 

that the integrands in equation (32) should be first 
written only in terms of the coordinate i. and that 
the variable over which the integration is performed). 
Finally, direct evaluation of the diffusion flux is made 
with the aid of any of the double integrals from equa- 
tion (33a). In the axisymmetric case (Z/Z; = 0) the 
diffusion flux should be calculated with the use of 

n 
I = 2 J(7l Pe) 

s 

sin e f(e) de 

0 J(=(r, 0)) 

= 2J(n Pe) (33b) 

which were derived allowing for the equality L:+ = 0 
and for equations (2lb), (23) and (30) at q = 0. 

Now it will be shown in which way the aforegoing 
results are applied for solving specific problems of a 
non-stationary three-dimensional diffusion boundary 
layer. 

5. UNSTEADY MASS TRANSFER TO A 

SPHERICAL DROPLET IN AN ARBITRARY 

DEFORMATIONAL SHEAR FLOW 

Consider unsteady diffusion to a spherical droplet 
(bubble) in an arbitrary developed linear defor- 
mational shear flow the unperturbed velocity field of 
which at infinity has the form 

r+ x1, P, =&,x,+0(1); 

E,, = E,, 651, +E22+4531 = 0) (34) 

where v, and E,, are the dimensionless components of 
velocity and shear tensor (the normalization of which 
will be shown further) written in terms of the Car- 
tesian coordinate system with the origin fixed at the 
droplet centre ; here and hereafter the summation is 
performed over the repeated indices i and j (i, j = 1, 
2, 3). The fact that the tensor diagonal elements are 
equal to zero results from the condition of fluid incom- 
pressibility div v = 0 ; the symmetry of the shear ten- 
sor components under the permutation of indices i 
and j corresponds to the absence of the rotational 
component of fluid velocity far from the drop. 

In the Stokes approximation the solution for the 
problem of the developed deformational shear flow 
around a spherical droplet, equation (34) is given by 
the expression [9] 

--%v,~~ 
5/9+2 1 s/J 1 
28+2 7 - - 7 

2/?+2 r (35) 

where fi is the viscosity ratio of the droplet and sur- 
rounding fluid (the value /I = 0 corresponds to a gas 
bubble), r = (X:+X:+X:)“‘. 

The symmetric tensor E can always be brought to 
the diagonal form with the components E,, E2, E, by 
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First, consider the most simple axisymmetric case 
which corresponds to the values 

E, = j, E2 = i, E3 = -1. (37) 

Due to the symmetry of the problem about the 
plane 0 = x/2, it is sufficient to limit the discussion to 
the region 0 < 0 Q n/2. Assuming in equation (30) 

A=- that u+ = 0 and taking into account equations (23) 

FIG. 2. Limiting streamlines on the surface of a spherical 
and (36), at Ez = E, = l/2, the function f can be 

droplet in a three-dimensional deformational shear flow. defined as 

f=v,sin& 
3 sin e cos e 

C@ = - 
2 B+1 

(38) 

applying the proper rotation of the coordinate system. The velocity scale for dimensionless equations (38) 
The diagonal elements E,,,(m = 1,2,3) determine the was taken to be the quantity U = aI Ej’j. 
intensities of the stretching (compressing) motion Evaluating the integrals 
along the principal axes of the tensor E. The values 
of E,,, are the roots of the cubic equation 

det II E,, -S,,E, II = 0. 

The symmetric shear tensor has three scalar invariants 

J, = E,6,, = E, + E2 + E, = 0 

J2 = (E,,E,,)’ ’ = (E;+ E;+E:)“’ 
and making use of equations (18) and (19), the new 
variable can be found 

J> = ldet IIE,,/I IIs3 = IE,E,E,I’:’ 3 1 
which remain unchanged on any rotations (with r=g 8+1 

1 
sin4 0 

reflections of the initial Cartesian coordinate system). 
Due to the fluid incompressibility J, = 0, only two 
out of three, diagonal components will be inde- 

- 1 +cot* Oexp (&)]‘). (39) 
[ 

pendent. 
Further, the Cartesian coordinate system fixed with Substituting equations (38) and (39) into equation 

respect to the principal axes of the shear tensor is (33b) gives the integral diffusion flux I per half the 

designated as X,, X2, X, (Fig. 2), and, for the sake of droplet surface (for 0 d 6 d n/2). The doubling of this 

definiteness, it is considered that E, 2 Ez 2 0, E, c 0. value will give the total diffusion flux per the entire 

In the spherical coordinate system r, 0, C$ fixed with droplet fx = 21. Allowing for the fact that the dimen- 

respect to the principal axes of the shear tensor the sionless spherical droplet surface is equal to 471, the 

tangential fluid velocity vector components (35) on mean Sherwood number Sh = 1,/(4n) can be defined 

the droplet surface (at r = 1) have the form as 

c,=-$$+-3E,+(E,-E,)cos24] 

lieu of the last four isolated critical points the critical 
runoff line appears at the droplet equator (0 = 11/2). 

5.1. The axisymmetric case 

Ez-E, 

“+ 2@+ 1) 
= - sin 0 sin 24. 

pe _ a*IW --. 
D (40) 

It is seen that the flow field is three-dimensional It should be noted that equation (40) at /3 = 0 was 
when E2 # E,. obtained previously in ref. [4]. 

It follows from equations (36) that on the spherical 
droplet surface there are six isolated singular critical 5.2. The three-dimensional case 

points located on the principal axes of the shear ten- Using equations (33a) the dependence of the mean 
sor: (1) 0-O; (2) 0=x; (3) t7=7r/2, $J=O; (4) Sherwood number Sh = 1,/(4n) on time will be 
e = x/2, 4l = 1[ ; (5) 0 = z/2, 4 = z/2 ; (6) e = x/2, obtained for a droplet in an arbitrary deformational 
4 = 3x/2. The first two of which are the points of flow shear flow. To the three-dimensional flow field there 
impingement, the following two are runoff points and corresponds the inequality E2 # E, in the expressions 
the last two are neutral points (the saddle-point singu- for the components of fluid velocities, equations (36). 
larity). In the limiting axisymmetric case at E, = E2 in It will be assumed, as before, that at first the con- 
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centration in the continuous phase is the same and 
that later the reaction starts to proceed diffusionally 
on the droplet surface. 

All calculations will be conducted sequentially fol- 
lowing the scheme given at the end of Section 4. 

Characteristic equation (27), which determines the 
dependence of the curvilinear coordinate I. on the 
spherical coordinates 0, 4 in view of equation (36), 
has the form 

2de 
-= 
sin 28 

3~5, + (E, -E,) cos 24 do. 
(E, -E,) sin 24 

(41) 

For the present, consider the flow region in the 
first quadrant 0 < 0.4 < n/2. The general solution to 
equation (41) can be presented in the form 

tan’ 0 tan” 4 sin 24 = A 

where 

li = 3Ex/(E2 - E,) 

and A is an arbitrary constant. The dependence of the 
curvilinear coordinate i. on 0 and ~5 is obtained by 
setting in the general solution that A = I, 

E. = tan’ e tan’ f#~ sin 24, 
E, +& h’ = 3=. (42) 

I- ? 

Here, for representing the exponent K, the third com- 
ponent of the metric tensor was excluded with the aid 
of the equality E, = -E, - Ez (see the first equation 
in system (36)). 

w = t- fi In tan f#~. 
I 2 

The mean Sherwood number Sh = 1,/(4~) is cal- 

Figure 2 depicts the qualitative behaviour of the 
limiting streamlines on the droplet surface in the first 
quadrant 0 < 8, 4 < 7112 ; the value of the new 
variable, equation (42), varies within the range from 
zero to infinity. 

Integrating characteristic equation (26) for par- 
ameters (37) 

culated at A = co from equation (21a) in the inte- 
grand of which the consequent transformations q + 
d-sin* 4 were performed with respect to the first 
variable of integration in view of equations (29)-(31) 
(in much the same way as the second integral in equa- 
tion (45) is calculated). Use was also made of the fact 
that the integral diffusional flux to the part of the 
surface considered constitutes l/8 of the total flux. 
The indicated procedure leads to the following 
expression for the mean Sherwood number : 

~0~8 
Pelt 

-z---&de= 
sin 24 d4 

K+COS 24’ 
h.=3 El+& 

a-l 

E, --E2 
(43) Wt’) = 

(2n)3'2 [2(1+a+a*)]'12 

s s,n:r$ 

X J .(*+ 1) *(I _,3”- ’ d_, 

[ 

3. (45) 
$*+ 1) 2+;(l_Y)(*-112 

1 

The use of these expressions for the variable Z, 
equation (18), gives 

Q(,; 4 dj 

Q(Y,;.) = ’ 
,Q.+ I),*(1 _y)“- I 

_ 
~.+l,:+~(l_y)‘“-l,~ 

1 

3 

p(o) = (1 +exp (Z$$w)l’ 

Ifcot’4exp (2s’)r’. (46) 

To formulate equations (46), the notation 
p(w) E sin* T(o) (see equations (18) and (19)) was 
employed and account was taken of 

for another curvilinear coordinate q gives 

rj = sin’ e(Kfc0s 24). (44) 

The integrals will be calculated which enter into 
equation (18) for the time-similar variable z. To this 
end, the last equations in system (32) will be employed 
and the equality ?;/a0 = 4i./sin 20 resulting from 
equation (42) will be taken into consideration. This 
will yield 

(47) 

.s(t’, x, I.) = I ;;_c I ) Q(Y, 3 dy * 

p(x, 1’) = 
x 

x+(1-x) exp (2t’) 

E:--E: a*J: 
t’=B+1t** Pe, = D(B+l) 

E: 1+a 
u=-, 

E: 
h.=j.-----. 

l-a 

J; = (cE;*,)‘!* = [2(Ef*+Ef*+E:E,*)]“‘. 

Here, the superscript ‘*’ corresponds to dimensional 
quantities, the function Q is determined in equation 
(46) and the modified Peclet number Pe, is introduced 
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= 1.4 
Sk 

1.0 1.; __----_ 
O.gO- 

C’ 

FIG. 3. The normalized mean Sherwood number vs dimen- 
sionless time for a spherical droplet in a plane shear flou. 

according to the second invariant of the matrix of 
shear coefficients just as it was done in refs. [5, 7, 81. 

When r’ -B co, p + 0 and equations (47) go over 
into the results of ref. [S] which correspond to the 
established mass transfer regime. 

Figure 3 shows the normalized mean Sherwood 
number S/Z/S/I, per spherical droplet in a plane shear 
flow at Ej’ = 0 (the respective flow field is three-di- 
mensional, see equation (36)) calculated numerically 
based on formula (47). Here .Sh, =0.615,/(&J 
is the mean Sherwood number corresponding to the 
steady mass exchange of the droplet with the plane 
shear flow [8]. 

6. AN APPROXIMATE EQUATION FOR THE 

MEAN SHERWOOD NUMBER IN THE CASE 

OF ARBITRARY FLOW ABOUT DROPLETS, 

BUBBLES AND SOLID PARTICLES 

An approximate equation will be obtained to cal- 
culate the mean Sherwood number for unsteady mass 
exchange of droplets, bubbles and solid particles in 
a developed flow of arbitrary type at large Peclet 
numbers. 

For this, it is necessary to proceed to the limit t --) 
00 in equation (40). As a result, the mean Sherwood 
number is obtained for steady mass exchange of a 
spherical droplet in an axisymmetric shear flow 

3Pe 

[ 1 
I z 

Sh, = ~ 
27@+1) . 

(48) 

Excluding the Peclet number from equations (40) 
and (48), equation (40) will be presented in the fol- 
lowing equivalent form [IO] : 

$ = {coth (n S/I: T)) ’ ‘, T = 9 (49) 
r 

where T = t/Pe is the new dimensionless time. 
Now, ‘forgetting’ that the coefficient Sh, in equa- 

\ 
.\. 

1 .o I - t 

0 02 04 0.6 0.6 1.0 

Sh: r 

FIG. 4. Comparison of the predicted mean Sherwood number 
by equation (49) (----) with the data obtained by other 

authors: a, refs. [l-3]; A, ref [I?]. 

tion (49) is specified by asymptotics of equation (40) 
when t -+ x and determining this coefficient directly 
from the solution of the corresponding stationary 
problem of convective mass and heat transfer at large 
Peclet numbers, equation (49) can be used with suc- 
cess for describing approximately the unsteady 
diffusion to the surfaces of droplets, particles and 
bubbles of any shape in an arbitrary flow. 

The fitting of the approximate equation obtained 
by the substitution into equation (49) of the cor- 
responding stationary value of [I I] 

2Pe 

[ 1 
I 2 

.sh,= ___ 
31f(P+ 1) 

, pe=% (50) 

to the results of refs. [l-3] shows that in the case of 
unsteady mass exchange of a spherical droplet with 
the developed translational Stokes flow the maximum 
error of equations (49) and (50) is less than 1%. In Fig. 
4 the curves corresponding to equations (49) and (50) 
and to the results of refs. [l-3] do not virtually differ 
(it should be remembered that the results of refs. [l- 
31 for the mean Sherwood number are expressed by a 
fairly complex integral which cannot be presented in 
a convenient analytical form of the kind of equation 

(49)). 
Substituting into equation (49) the quantity [ 1 l] 

Sh, = 0.624Pe’ ‘, Pe = f$$ (51) 

gives an approximate equation for calculating the 
mean Sherwood number in the case of unsteady mass 
transfer to a solid spherical particle in a developed 
translational Stokes flow. The maximum difference 
between equations (49) and (50) and the approxi- 
mation [I21 to the numerical-analytical solution of 
a similar problem [I31 constitutes less than 2% (see 
Fig. 4). 

Recall that equation (49) is exact in the diffusion 
boundary layer approximation for unsteady diffusion 
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Table 1. Comparison of the mean Sherwood number predicted by equation (49) with the data of other authors for different 
cases of flow about spherical droplets, bubbles and solid particles 

Type of particles Kind of Bow Method of solution Error (7’0) Reference 

Droplet, bubble 
Droplet, bubble 
Bubble 

Particle 

Solid particle 

Droplet, bubble 

Droplet, bubble 

Solid particle 

Axisymmetric shear flow 
Translational Stokes flow 
Laminar translational flow 
at large Reynolds numbers 
Translational flow of 
ideal inviscid fluid 
Translational Stokes flow 

Three-dimensional shear 
Stokes flow 
Flow formed due to the 
presence of electrical field 
Translational Stokes flow 

Analytical, DBLAt 
Analytical, DBLA 
Analytical, DBLA 

0 
0.7 
0.7 

Analytical, DBLA 

Series expansion + 
approximation 
Analytical, DBLA 

0.7 

1.4 

1.8 

Analytical, DBLA 0 

Finite-difference 
numerical method 
(at Pe = 500) 

4 

Present work 

Present work 
and [ 141 

WI 

t DBLA, dtffusion boundary layer approximation. 

to a spherical droplet in an axisymmetric translational 
flow. Comparison with the predicted data presented in 
Figs. 3 and 4 shows that the error of the approximate 
equation (49) in the case of a plane shear (corresponds 
to the three-dimensional flow field, equation (36), at 
E2 = 0) constitutes less than 1.8%. 

In a similar fashion approximate equations can be 
also obtained for other non-stationary problems. For 
example, using the auxiliary quantity (71 

a?J,* 
S/l, = 0.9PeL3, Pe, = -y, J* = (Ep;)‘:’ 

in equation (49) makes it possible to describe the 
process of the establishment of mass transfer to the 
surface of a spherical solid particle in an arbitrary 
deformational linear shear Stokes flow (in this case 
the fluid velocity components are determined by equa- 
tions (35) at /I = co). Moreover. the substitution into 
equation (49) of the auxiliary value of the mean Sher- 
wood number S/r, = (ZPejn)“‘, which corresponds 
to a steady process of diffusion to a sphere in a poten- 
tial translational ideal (inviscid) fluid flow, leads to a 
very insignificant error (< 1%) as compared with 
exact results 12, 31. 

Table 1 (see also Fig. 4) presents the comparison of 
the mean Sherwood number predicted by equation 
(49) with the data of other authors obtained for 
different cases of flow around spherical droplets, bub- 
bles and solid particles. 

It should be noted that equation (49) can also be 
used to calculate unsteady mass transfer of droplets, 
bubbles and solid particles of non-spherical shape. In 
this case the mean Sherwood number should be 
defined as the ratio of the dimensionless total (inte- 
gral) diffusional flux to the dimensionless particle sur- 
face area. Then the approximate equation (49) will 
ensure the correct asymptotic result at small and large 
values of the dimensionless time r. 

7. PROBLEMS OF STEADY-STATE MASS 

EXCHANGE BETWEEN DROPLETS, BUBBLES 

AND SOLID PARTICLES AND A FLOW IN THE 

PRESENCE OF VOLUMETRIC REACTION 

Consider the developed mass exchange between a 
spherical particle (droplet) of radius u and a fluid flow 
when the substance diffusing from the particle surface 
undergoes the first-order chemical transformation 
with the rate W = KC, in the external phase volume 
where C, is the concentration, K the constant of the 
volumetric chemical reaction rate. 

In dimensionless variables in the spherical coor- 
dinate system r, 0,4, fixed with respect to the particle, 
the process of mass transfer in the fluid is represented 
by the following equation and boundary conditions : 

Pe(vV)E = A?-kE (52) 

r= 1, F= 1 (53) 

r-x, C-0 

E = c,jc,, Pe = au/D, k = a2K, D (54) 

where C, is the concentration on the particle surface, v 
the fluid velocity distribution considered to be known 
from the solution of the corresponding hydrodynamic 
problem. 

For solving the stationary problems of convective 
mass exchange of droplets and particles with fluids 
in the course of the first-order volumetric chemical 
reaction, it is convenient to use the results obtained by 
solving the corresponding non-stationary problems 
without volumetric reaction. To see this, consider the 
equation 

SC 
r + Pe(vV)c = AC 

under initial and boundary conditions 

(55) 
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r=O.c=O: r= I,c= I: r+x,c+O (56) 

M hem v is the fluid velocity vector corresponding to 
the stationary flow field. 

Applying the Laplace-Carson transformation 
(with the actual parameter k) to equations (55) and 

(56) 

% 
c=k 

s 
exp (-kr)c ds (57) 

0 

the stationary problem in the presence of the first- 
order volumetric chemical reaction, equations (52)- 
(54), is obtained. 

It follows from equation (57) that the mean Sher- 
wood number 

which corresponds to the solution of problem (52)- 
(54). CM be espressed in terms of the auxiliary Sher- 
wood number S/r determined by solving non-station- 
ary problem (55). (56) in the following fashion : 

- s 

T 

Sk = k exp (-/CT).% dr. (58) 
0 

A useful assessment will be obtained which will be 
needed in what follows. Assume that S/i is the mean 
Sherwood number corresponding to the exact solu- 
tion of auxiliary problem (55), (56) and S/r., is the 
approximate expression for the Sherwood number the 
error of which is 6, i.e. 

IS/?-Sh,,,l < 8. (59) 

Applymg the Laplace-Carson transformation to 
the difference S/J-%,,, in view of equation (59) yields 
the inequality 

I 

% 
S/i - sir,, = k exp ( - ks) (sh - .%,,) dr 

0 

f 

x 

< cik exp (-kr) dr = 6 (60) 
” 

where 3 and ?$,,, are the exact and approximate 
values of the mean Sherwood number, respectively, 
which correspond to the solution of the stationary 
problem with the first-order volumetric chemical reac- 
tion. equations (52)-(54). Similarly it can be found 
that SAP- 3 < 6. Taking into account equation (60). 
this yields the inequality 

IS/?-Sh,,l < 6. (61) 

The assessment (61) shows that, having obtained a 
sufficiently good approximate relation for the auxili- 
ary Sherwood number in the non-stationary problem 
by applying the Laplace-Carson transformation, it is 
possible to get a good approximate expression (with 
the same precision) for the mean Sherwood number in 
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FIG. 5. The mean Sherwood number vs the dimensionless 
reaction rate constant : -, calculation by equation (62) ; 
-----, calculation by equation (64); x x x x x, ref. [16]. 

the stationary problem with the first-order volumetric 
chemical reaction. 

Taking into account the aforegoing, use will now 
be made of the results of Section 6 in which the 
diffusion boundary layer non-stationary problems 
were considered. 

Equation (49) will be .employed as the auxiliary 
mean Sherwood number. 

Applying the Laplace-Carson transformation to 
equation (49) an approximate solution will be 
obtained for a series of corresponding stationary 
equations, equations (52)-(54), with the first-order 
volumetric chemical reaction in the form 

(62) 

where the function F is prescribed by the integral 

- F(x) = x 
I 

exp (-xr)[coth (n~)]',~ dr. (63) 
0 

Inequation (62) the quantity a,corresponds to the 
mean Sherwood number in the absence of volumetric 
chemical reaction, i.e. at k = 0. (In writing equation 
(62) allowance has been made for the equality 

sh, = so, where the quantity Sh, = lim,,, Sh cor- 
responds to the developed diffusion regime in non- 
stationary problem (55), (56) and the quantity 
si; o = limk,, ?% determines the mean Sherwood 
number in problem (52)-(54) at k = 0.) 

Approximate equation (62) adequately displays the 
structure of the dependence of the mean Sherwood 
number on the complex k/s,2 at large Peclet numbers 
(in the diffusion boundary layer approximation). 
When k + 0, equations (62) and (63) yield the exact 
result, i.e. sh + ao. In the other limiting case of k --t 
a3 (Pe= const.), the correct asymptotic result, i.e. 
that % -+ ,/k [5], is obtained from equation (62). This 
equation also ensures an accurate asymptotic result 
when Pe + co (k = const.), since in this case so -+ 
10 and%+%,. 
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Figure 5 presents the curves plotted from equations 
(62) and (63). The points correspond to the solution 
which was obtained for the problem of mass exchange 
of a spherical droplet with a translational Stokes flow 
by another technique in ref. [ 161 (see also ref. [6]). 

It is important to observe that for the axisymmetric 
shear flow around a spherical droplet. equations (62) 
and (63) are exact. The maximum error of equation 
(62) for some other cases of mass exchange of 
droplets. bubbles and solid particles in different flows 
in the presence of the first-order volumetric chemical 
reaction can be estimated using Table I, with the 
result of Section 6 taken into account. In particular, it 
follows from Table I that the solution of the three- 
dimensional problem on diffusion to a spherical drop- 
let in a plane shear flow leads to the relation for the 
mean Sherwood number which differs from equations 
(62) and (63) by less than 1.8%. 

For approximate calculations of the mean Sher- 
wood number, it is possible to make use of the fol- 
lowing simple expression : 

Sh = \ k coth (\!k/.Sh;) (64) 

which differs from more complex equations (62) and 
(63) by less than 2%. Equation (64) is shown in Fig. 
5 by a dashed line. 

It should also be noted that the root of the cubic 
equation 

sT;‘--lC;Ti;-si;; = 0 (65) 

differs from equation (62) by less than I % at most. 
Thus. it is shown that equations (62), (64) and (65) 

can be successfully used for the approximate deter- 
mination of the mean Sherwood number in problems 
on mass transfer of droplets, particles and bubbles in 
different types of flows in the presence of the first- 
order volumetric chemical reaction at large Peclet 
numbers. Recall that the parameter a,, corresponds 
to the mean Sherwood number in analogous, more 
simple problems at k = 0, i.e. in the absence of volu- 
metric reaction. 

Rem&. For droplets and particles of non-spherical 
shape the mean Sherwood number in equations (63)- 
(65) is to be determined from the equation sh = i/S, 
where 7is the dimensionless integral (total) diffusion 
flux per particle, S the dimensionless particle surface 
area. In this case approximate equations (62), (64) 
and (65) will guarantee a correct asymptotic result in 

three limiting cases : (I) k + 0 (Pe = const.) : (2) k + 

00 (fe = const.) ; (3) Pe + x (k = const.). 
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PROBLEMES TRIDIMENSIONNELS DE COUCHE LIMITE DE DIFFUSION VARIABLE 

R&ani-Dans l’approximation de la couche limite de diffusion, on obtient une solution analytique exacte 
pour le probleme de P&change convectif variable de masse entre une gouttelette (bulle) sphirique et un 
&couIement cisaillant arbitraire, avec un champ de vitesse non perturb& d&it par un tenseur symitrique 
des deformations. On etabht la dependance du nombre de Sherwood vis-a-vis du temps. On presente une 
formule approcbee simple pour le calcul de P&change de masse pour des gouttes et des particules solides 
avec un ecoulement arbitraire permanent, On considtre le probltme stationnaire d’bchange de masse entre 
une gouttelette et un ecoulement cisaillant lintaire, en presence d’une reaction chimique du premier ordre. 
On suggire une equation pour calculer le nombre de Sherwood pour une gouttelette ou une particule de 
forme arbitraire et pour un type quelconque d’ecoulement a grand nombre de Pellet dans le domaine entier 

des constantes de vitesse de reactton. 

DREIDIMENSIONALE GRENZSCHICHTEN MIT INSTATIONARER DIFFUSION 

Zusammenfassung-Bei Naherungsbetrachtungen fur Diffusionsgrenzschichten ergibt sich eine exakte 
analytische Liisung fur das Problem des instationlren konvektiven Stoffaustauschs zwischen einem kuge- 
ligen Tropfen (Blase) und einer beliebigen dreldimensioffaien lrnearen Scherstromung. Das ungestiirte 
Ge~hw~ndigkeitsfeld ist durch einen symmetrischen Schertensor gekennzeichnet. Es ergibt sich die Abhgn- 
gigkeit der Sherwood-Zahl von der Zeit und der Peclet-Zahl. Eine einfache Naherungsgleichung fiir die 
Berechnung des instationlren Stoffaustauschs von Tropfen und Feststoffpartikeln mit einer beliebigen 
stationaren Striimung wird vorgestellt. AuBerdem wird das stationare Stofffibergangsproblem zwischen 
einem Tropfen und einer linearen Scherstriimung in Anwesenheit einer volumetrischen chemischen Reak- 
tion erster Ordnung betrachtet. Es wird eine Gleichung vorgeschlagen zur Berechnung der Sherwood-Zahl 
fiir einen Tropfen oder ein Partikel beliebiger Form und fur jede Striimungsart (groge Peclet-Zahlen) iiber 

den gesamten Bereich von Reaktionskonstanten. 

TPEXMEPHbIE 3A&4WI HECTAIJBOHAF’HOFO ~HcD@Y3BOHHOI-0 I-IOI-PAHMYHOI-0 
cJIo5I 

Asmoraums-B np~6~~xeHnn ~~~HOHHO~O ~O~~HH~O~O snon nonyqexo roxrroe a~~~TH~~K~ 
peutetme aanami 0 n~a~o~apHoM XOH~~%TWBHON htaccoo6MeHe c+epwwxoB Kanms (nyohrpn) c 
npomaonbrfbtM TpexMeptibtM nsinelnbrt+i C~~BHTOB~IM rtoTofiohi,iie~03hsy13ietit1oe nonecKopcaei4 KOTO- 

poro 3anaercK csi~~erpri~nbrhr rea3opoM crtarrra. Onpenenena aaasicKMocrb Yricna IIIepnyaa or 
eper.rems H mrfna ITerne. IIpmsenena npocran npK6nKxemran @opMyna nm pacvxaa HHtemmmcrH 

HecrauHoHaptzoro Maccoo6MeHa xanenb H meprullx Yacmu c npoH3eonbHm ycra~oemuxmcn 

IIOTOKOM. PaCCMOTpeHaCTaUHoHapHaK 3aAaua 0 MaccoofjMeHe KaILW B JtHHe#HOM CABHTOBOM nOTOKe 
npsi nponramiti o6sehiHoil ximm~ecK0~ peaKiutH ncpaoro nopnma. Qmworcexa $opMyna, no3- 

anorak n~q~~~b qxcno IlIepeyAa na Kanmo w racrmy nposuaonbxoB +op~bl H mo6oro rssrra 
re~erisfnnpri 6onbunix=mmx~ewne~o BC~M llHana3oHeH3MeHeHHKKoHcTaHTbl c~opocrxpeaania. 


