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Abstract—In the diffusion boundary layer approximation an exact analytical solution is obtained for the
problem of unsteady convective mass exchange between a spherical droplet (bubble) and an arbitrary
three-dimensional linear shear flow, with the unperturbed velocity field assigned by the symmetric shear
tensor. The dependence of Sherwood number on time and Peclet number is established. A simple approxi-
" mate formula is presented for calculating the rate of unsteady mass exchange of droplets and solid particles
with an arbitrary steady flow. The stationary problem of mass exchange between a droplet and a linear
shear flow in the presence of the first-order volumetric chemical reaction is considered. An equation is
suggested to compute the Sherwood number for a droplet or a particle of arbitrary shape and for any type
of flow at large Peclet numbers over the entire range of reaction rate constants.

1. INTRODUCTION

UnsTEADY diffusion to a spherical droplet (bubble) in
a developed translational Stokes flow at large Peclet
numbers was considered in refs. [1, 2]. A similar prob-
lem of convective mass and heat transfer for potential
flow of an ideal fluid about a droplet was studied in
refs. [2, 3]. In ref. [4] (see also ref. [5]) the solution
was obtained to the problem of unsteady mass transfer
of a spherical droplet in an axisymmetric shear Stokes
flow.

Diffusion to a droplet in a translational Stokes flow
in the presence of a first-order volumetric chemical
reaction was examined in ref. {6]. The problems of
stationary mass transfer of a solid spherical particle
[7] and a droplet [8] in three-dimensional translational
flow were investigated. A comprehensive treatment of
the resuits and methods of solution of corresponding
problems, as well as a sufficiently complete bib-
liography on the subject can be found in ref. [5].

The present study is the first to provide examples
which illustrate exact integration of three-dimensional
non-stationary equations for a diffusion boundary
layer.

2. FORMULATION OF THE PROBLEM.
THREE-DIMENSIONAL ANALOGUE OF THE
STREAM FUNCTION

Consider unsteady convective diffusion to the sur-
face of a droplet (bubble) of arbitrary shape in a
laminar viscous incompressible fluid flow. Assume
that the main resistance to transfer is concentrated in
the continuous phase. The method given below is also
appropriate in the case of convective mass and heat
exchange between a particle and an ideal fluid.

Suppose that at the initial instant of time ¢, = 0 the

concentration beyond the droplet is the same and
equal to C,, whereas when ¢, > 0, on the droplet
surface there occurs a complete absorption of the
substance dissolved in the fluid (i.e. the diffusional
regime of reaction is realized which corresponds to
zero concentration on the droplet surface). It will be
considered that the Peclet number Pe = qU/D is large
as usual (here a is the characteristic size of the droplet
(for example, radius), U the characteristic flow vel-
ocity and D the diffusion coefficient). For simplicity,
the flow field is assumed to be established and known
from the solution of the corresponding hydrodynamic
problem.

To analyse the diffusion boundary layer, the local
orthogonal curvilinear system of dimensionless coor-
dinates &, 5, 4 will be introduced which is fixed with
respect to the droplet surface and streamlines [5, 8].
Suppose that the vector of the normal to the droplet
surface determines the direction of the unit vector e,
(see Fig. 1). The direction of the fluid velocity vector
at this point of the surface prescribes the direction of
the unit vector e,. The unit vector e, is perpendicular
to both e, and e,. In such a coordinate system the
presentation v = {v,, v,, 0} is valid for the fluid vel-
ocity vector. To be specific, it is further assumed that
the droplet surface is prescribed by the fixed value
§=4.

Taking into account the fact that in the coordinate
system chosen the continuity equation for incom-
pressible fluid has the form

divv—._l_[i(v \/(9 )>
) Jolé "V \ge
’ ‘;—" <U"‘/<gi>)i| =0, 9=gugmgu ()

where g.:, g,,, g.: are the metric tensor components.
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NOMENCLATURE
a characteristic size of droplet, bubble or Sh mean Sherwood number in stationary
solid particle (radius of a spherical problems with volumetric reaction
particle) Sh, mean Sherwood number corresponding

C,  concentration in flow

C,  concentration at the initial time instant

C, concentration on the surface of droplet
(particle, bubble)

¢ dimensionless concentration in non-

stationary problems, (Co—C,)/C,

dimensionless concentration in

stationary problems with volumetric

reaction, C,/C,

D diffusion coefficient

EY, E,, dimensional and dimensionless shear
tensor components

E* E, dimensional and dimensionless shear
tensor components in the Cartesian
coordinate system fixed with respect to

. the principal axes of shear tensors

f function determining the stream function

analogue, equation (6)

™

Gss G G MELric tensor components
g third metric tensor invariant, g, g,, 9.
I dimensionless integral (total) diffusional

flux onto droplet surface

J; (EEE:‘;)L?: (Er2+Exzu2+E;2)|/2

J, shear tensor invariants, equation (36)

j dimensionless diffusional flux

K first-order volumetric chemical reaction

rate constant

k dimensionless volumetric chemical
reaction rate constant, a>K/D

Pe Peclet number, al//D

r,0, ¢ spherical coordinate system with
origin fixed at droplet centre

Sh mean Sherwood number in non-
stationary problems

to steady mass exchange regime,

lim,_ . Sh

mean Sherwood number in the absence

of volumetric reaction, lim,_ , S/

e time

t dimensionless time, Ut,/a

U characteristic flow velocity

U, unperturbed translational flow velocity
far from droplet

v fluid velocity vector

vg, Uy tangential components of fluid
velocity vector on droplet surface

x, Cartesian coordinate system with origin
fixed at droplet centre (i = 1, 2, 3)

z time-like variable determined by

equation (18), z(z, n, ).

Greek symbols
B ratio of dynamic velocities of droplet and
surrounding fluid (# = 0 corresponds
to a gas bubble)
curvilinear coordinate system fixed

with respect to droplet surface and

streamlines

dimensionless time, t/Pe = Dt,/a?

¥ three-dimensional analogue of function
(in plane and axisymmetric case is
identical with conventional stream
function).

&, i

“a

Superscript and subscript
s quantities are taken on droplet surface.

FiG. 1. Curvilinear orthogonal coordinate system fixed with
respect to the droplet surface and streamlines.

The function y(¢, n, A) will be defined as the solu-
tion of the system

w_ (s W __ \/(L) 5
55_0"\/<9vm)’ - s @

Then, continuity equation (1) which agrees with the
requirement of the system integrability, is satisfied
automatically. The integration constant is selected so
that the function i would transform into zero on the
droplet surface at £ = £,.

The surfaces (&, n, i) = const. are composed
entirely of streamlines. The function y is simple physi-
cally, i.e. it is a three-dimensional analogue of the
stream function. In the plane and axisymmetric cases
it coincides with the conventional stream function.

In dimensionless variables of the curvilinear coor-
dinate system ¢, n, 4 the equation of the unsteady-state
diffusion boundary layer and also the corresponding
initial and boundary conditions have the form

ée 1(aw dc oy 6c> 11 9%

o g\ E ) regroe O

8¢ 3y on OE
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t=0,c=0, E=¢,c=1; (- 0,c—>0 4

CQ_C‘ Ut. aU
c= C, ’ I-—T, Pe—-E. (&)

Here and hereafter the superscript ‘s’ means that the
corresponding quantities are taken on the droplet sur-
face at { = ¢,; g* and g%, are known functions depend-
ing only on two curvilinear coordinates  and 4i; C,
is the concentration in the flow.

As usual, in deriving equation (3) the diffusion
transfer along the droplet surface was neglected in
comparison with that along the normal, and only
higher order terms in the expansion of the metric
tensor components were taken into account when
& - £,; moreover, use was made of the relationship
between the fluid velocity vector components and
stream function analogue (2).

Allowing for the condition of the droplet surface
impermeability to the fluid, the ftuid velocity com-
ponents with & — &, will be defined as

Therefore, due to equalities (2), the following rep-
resentation is valid for the stream function analogue
in the boundary layer:

Y= (=8 (n,4). 6

In deriving equation (6), the following relations
were taken account of :

ge: = 0(1), gp =0(1), gu=0()

which were valid near the droplet surface when ¢ —
.

For simplicity it is assumed below that in the flow
region under consideration the inequality f > 0 is sat-
isfied when & > £,.

It should be noted that the third curvilinear coor-
dinate enters into equation (3) only parametrically,
therefore the dependence of the functions employed
in the study on 4 is not further indicated.

3. THE METHOD OF SOLUTION

In the diffusion boundary layer equation (3) the
change-over will be made from the variable ¢ to the
new variable {, according to the equation

{=yJ(Pe) Y

where the function ¥ is determined by equation (6).
This will yield

LS ke _fa
Jy‘ an gy 00 ®

The distribution of concentration is sought in the
form

c=c(,2) ®

where z = z(¢, n, A) is the new time-like variable found
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below in the course of problem solution. Substituting
equation (9) into equation (8) one obtains

(E- fé >6c [t ée

+ Fiair gl T &
Jginjéz g &

Now, let the requirement be imposed that the func-

tion z should satisfy the following first-order linear
partial differential equation:

(10

Cz ¢: 2
A )
Jogten o gk
as well as the additional condition that
t=0, -=0. (12)

Then equation (10) is reduced to the standard heat
conduction equation

2

==. (13)
5

Q)l <
o
(=)
ol

L1
(=3

The initial and boundary conditions for equation
(13) follow from equation (4), allowing for equations
(6), (7) and (12), and have the form

z=0,c=0; {(=0,c=1; {-5o,c—0 (14

The solution of problem (13), (14) is well known

{
= Erfc ,
4 ¥ (2\/:>

2 a
Erfcx=—| exp(—x%dx.
\/n'[ p(—x7)dx

(15

The relation = = z(¢, n) will now be found from
equation (11) which is equivalent to the following
system of ordinary differential equations:

‘/g dn f~; dz.

Integrating the first two and the last two equations
(16) obtain the first integrals

t—J'\—/fisdn=An z— J‘\g/g fdn= 4,

where 4, and A, are arbitrary constants. Therefore,
the general solution to equation (11) has the form (®
is an arbitrary function)

z= J%quw (:—f‘/Tgs dr]).

The explicit form of the function @ is ascertained with
the aid of condition (12). As a result, the following
expression will be obtained for the variable -:

" Ve _ _'[\/g‘
T(w)gs fd"’ @=! f

where the function T = T(w) is found from the equal-
ity

(16)

an

1Y

(18)

(19

Z=
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The use of equations (6), (7) and (15) for the dimen-
sionless local diffusion flux on the droplet surface
gives

- ;(2) _
SENZA B

For the dimensionless total diffusion flux on the
droplet surface S= {{ =&, 0<n < H, 0< i< A}
one obtains

A H
- HdeS=L L NGug, dnd2

\/(Pe)J J"’f\/g dndi

g::\/ =

In the two-dimensional case (¢/¢i = 0) equation
(21a) simplifies to

F(n, 1)/ (Pe)
Jrgi(n. Dz(t,n, 7))
(20)

(21a)

\/ (Pe)

v 7r 0

"IJe fJg dn
NE

Here the value A = 2n corresponds to the axisym-
metric case and A = 1 to the plane case.

I=A (21b)

4. FORMULAE FOR COMPUTING NEW
VARIABLES AND DIFFUSION FLUXES IN
THE SPHERICAL COORDINATE SYSTEM

Usually the initial information on the flow field
enables one to directly obtain only the distribution of
fluid velocities near the droplet in a certain orthogonal
fixed coordinate system &, 8, ¢ fixed only with respect
to its surface (and not to streamlines). Therefore, in
the general case of a three-dimensional flow field it
is first necessary to solve the auxiliary problem of
determining the curvilinear coordinate system ¢, #, 4
described previously and to find the expansion of the
stream function analogue near the droplet surface (6) ;
after that it is possible to use equations (15), (20) and
(21a) to calculate the basic characteristics of unsteady-
state mass transfer.

It will be shown in which way the diffusion fluxes
and the functions f and - are calculated for a droplet
(bubble) of spherical shape in the three-dimensional
case. It will be assumed that the tangential com-
ponents of the fluid velocity vector near the droplet
surface are known

vy = 0e(0, @), Uy = U¢(9, ¢) (r—=1).

Here the dimensionless spherical system of coor-
dinates r, 0, ¢ is used with the origin fixed at the
droplet centre. The coordinate ¢ and the metric tensor
components (at & = ¢,) are given by the formulae

(22)

E=r—1; gs=1g=1,65 =sin’0. (23)
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The sought orthogonal curvilinear coordinates
n=n(6,¢) and i=i(f, ¢) should by definition
satisfy the relations

v, =const. Vy, (v,*VA) =0
¢ | O
V. = ey teyty, V=e— 70 +ed,Sln 5 579;

Hence, there are the following first-order partial
differential equations for 7 and 4:

cn tg 0
Yo7 " sinB g O (24)

; o4 + vy i/_ _
900 ' sin 0 d¢
The dependence of the sought curvilinear coor-
dinates n and 4 on the spherical coordinates 8 and ¢
will be determined by the first integrals of the charac-

teristic equations
vy d8 = —sin Ov, dop
vy d0 = sin Oy dop

(25

(26)
@7

which comply with equations (24) and (25).

Assuming now the functions 5 =n(f, ¢) and
4 = Ai(6, @) to be known, use will be made of the fact
that the square of the length on the droplet surface is
preserved during transition from the old, 6, ¢, to the
new, 1, 4. coordinate system

d6*+sin? 0d¢? = g, dn* +g5; di*

_on 4 4pu O%
(dq =5 d0+ 3 ¢d¢ di = 0d0+a¢d¢>.

(28)

Taking account of equations (24) and (25) and
making some transformations, obtain from equation
(28) the sought expressions for the metric coefficients

gmandg,,
n? L¢ o
o (c¢)

Y
l.Z —_ L’g +u;

2 2
g = s (ZO) =sin? 92 C(;) .29

Now substitute equation (6) into the first equation
(2) on the right-hand side of which only the main
expansion terms were retained for ¢ — £, Further,
allowing for the equality v, = |v'|, the function f will
be found which specifies the stream function analogue

fme¥L, om

Vo
In the integrals, which determine the time-like vari-
able =, equation (18), and which appear in equations
(17)—(21a), the change-over should be made from the
integration variable n to the spherical coordinate 0 (or

—\/(L,, +r3). (30)
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¢) using the following relations, which are valid at
A = const.:
v .U
Vi dn = —df = sin 6 —d¢. 3h
Vo Uy
These relations are derived from equation (28) tak-
ing into account the fact that the equality 4 = const.
is fulfilled on the integral curves of the characteristic
ordinary differential equation (27) which conforms to
the partial differential equation (25).
Using equations (29)—(31) for the integrals in equa-
tion (18), obtain

Ve _j_JL i, _de__“__v}
j f dn= v dn = {l’v}a- Us Add’

" gs " S . 4 .
j Lfdn=f vg“\/g,,,, dn:J sin* 0

3
ge:

i\-2 as\—2
{t‘a (%) } do = J.w {sin Ov, (g—;) } d¢. (32)

Here, {F}, d¢ (or {F}; df) in the integrands means
that the function F(8, ¢) is written in terms of the
variables 4 and ¢ (or 4 and 0) with the aid of the
relation 4 = A(0, ¢) and in integration 4 is considered
to be a parameter.

The Jacobian corresponding to the transition from
the coordinates n, 4 to 8, ¢ is calculated from the
equation

o(n, 2) 1

Transforming in integrand (21a) to the spherical
coordinates 0, ¢ allowing for equations (25), (29),
(30), the following equation will be obtained for com-
puting the integral diffusion flux onto the droplet sur-
face:

e[ [t
ST

Thus, the calculation of the most significant mass
transfer, i.e. of the integral flux (or of the mean Sher-
wood number) is performed in four steps. First, the
components of fluid velocity on the droplet surface
are determined, equation (22). Further, the general
solution is found for characteristic equation (27), the
substitution of the arbitrary integration constant of
which by 4 yields the relation 4 = A(8, ¢). As the third
step, the variable z, equation (18), is calculated with
account being taken of equations (19) and (32) (recall

1379

that the integrands in equation (32) should be first
written only in terms of the coordinate 4 and that
the variable over which the integration is performed).
Finally, direct evaluation of the diffusion flux is made
with the aid of any of the double integrals from equa-
tion (33a). In the axisymmetric case (C/¢4 = 0) the
diffusion flux should be calculated with the use of

Tsin @ f(9) d6
= P, —_—_—
I=2/(n Pe) y /G0 0)

3 * sin? B|r,| df
=2,/(n Pe) J; _———\/(z(t, )

which were derived allowing for the equality v, =0
and for equations (21b), (23) and (30) at 5 = 0.

Now it will be shown in which way the aforegoing
results are applied for solving specific problems of a
non-stationary three-dimensional diffusion boundary
layer.

(33b)

5. UNSTEADY MASS TRANSFER TO A
SPHERICAL DROPLET IN AN ARBITRARY
DEFORMATIONAL SHEAR FLOW

Consider unsteady diffusion to a spherical droplet
(bubble) in an arbitrary developed linear defor-
mational shear flow the unperturbed velocity field of
which at infinity has the form

r- o, =E:x,+o(l);

E,=E, (E\+En+E;=0) 34)

where v, and E,, are the dimensionless components of
velocity and shear tensor (the normalization of which
will be shown further) written in terms of the Car-
tesian coordinate system with the origin fixed at the
droplet centre; here and hereafter the summation is
performed over the repeated indices i and j (i, j = 1,
2, 3). The fact that the tensor diagonal elements are
equal to zero results from the condition of fluid incom-
pressibility div v = 0; the symmetry of the shear ten-
sor components under the permutation of indices i
and j corresponds to the absence of the rotational
component of fluid velocity far from the drop.

In the Stokes approximation the solution for the
problem of the developed deformational shear flow
around a spherical droplet, equation (34) is given by
the expression [9}

- g1
t, = E,x, (1_ﬂ+l =

sg+21  SB 1
_.Ejkx,x,xk <5m ;—5 - §E+—2' ?>

where f is the viscosity ratio of the droplet and sur-
rounding fluid (the value 8 = 0 corresponds to a gas
bubble), r = (x? +x3+x}) "2

The symmetric tensor E can always be brought to
the diagonal form with the components E,, E,, E; by
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Fi1G. 2. Limiting streamlines on the surface of a spherical
droplet in a three-dimensional deformational shear flow.

applying the proper rotation of the coordinate system.
The diagonal elements E,,(m = 1, 2, 3) determine the
intensities of the stretching (compressing) motion
along the principal axes of the tensor E. The values
of E,, are the roots of the cubic equation

det | E,—5,,E,,| = 0.

The symmetric shear tensor has three scalar invariants
Jy=EJ, =E+E,+E;=0
Jy=(E,E) = (E}+E}+E}"?

Jy = |det || -/||||'3 =|E E,E;]"?

which remain unchanged on any rotations (with
reflections of the initial Cartesian coordinate system).
Due to the fluid incompressibility J, = 0, only two
out of three, diagonal components will be inde-
pendent.

Further, the Cartesian coordinate system fixed with
respect to the principal axes of the shear tensor is
designated as X, X, X; (Fig. 2), and, for the sake of
definiteness, it is considered that £, > E, 2 0, E, < 0.
In the spherical coordinate system r, 8, ¢ fixed with
respect to the principal axes of the shear tensor the
tangential fluid velocity vector components (35) on
the droplet surface (at r = 1) have the form

be = 45(‘/;’j?)[ 3E,+(E, — E;) cos 24)]
—E,
Uy = 2(ﬂ+1) sin 0 sin 2¢. (36)
It is seen that the flow field is three-dimensional
when £, # E,|.

It follows from equations (36) that on the spherical
droplet surface there are six isolated singular critical
points located on the principal axes of the shear ten-
sor: (1) 0=0; 2 6=n; 3) 0=n/2, ¢=0; (4
0=mn/2, o=mn; (5) 0=mn/2, ¢ =m/2; (6) 0=mn/2,
¢ = 3n/2. The first two of which are the points of flow
impingement, the following two are runoff points and
the last two are neutral points (the saddle-point singu-
larity). In the limiting axisymmetric case at £, = E,in

A. D. POLYANIN

lieu of the last four isolated critical points the critical
runoff line appears at the droplet equator (9 = n/2).

5.1. The axisymmetric case
First, consider the most simple axisymmetric case
which corresponds to the values

E =), Ey=1 E,=-L 37

Due to the symmetry of the problem about the
plane 8 = =/2, it is sufficient to limit the discussion to
the region 0 < 0 < n/2. Assuming in equation (30)
that v, = 0 and taking into account equations (23)
and (36), at E, = E, = 1/2, the function f can be
defined as

sin 0 cos 0

B+1

The velocity scale for dimensionless equations (38)
was taken to be the quantity U = a|E¥/.
Evaluating the integrals

. 3
f=uvysinb, v, = 2 (38)

"Jg '[ 3sin* ¢
Y vp sin? 0d0—8 551
"Jg 9do 2

I dn—J‘v—o——S(ﬂ-H)lntanG

and making use of equations (18) and (19), the new
variable can be found

1 -
—S-ﬂ——{sm 7]

-2
- [l +cot? § exp (ﬂ_i-[f>] } 39)

Substituting equations (38) and (39) into equation
(33b) gives the integral diffusion flux 7 per half the
droplet surface (for 0 < 8 < n/2). The doubling of this
value will give the total diffusion flux per the entire
droplet Iz = 2I. Allowing for the fact that the dimen-
sionless spherical droplet surface is equal to 4x, the
mean Sherwood number Sh = I;/(4n) can be defined

L.J

zZ=

as
3Pe 3t 2
Sh= {21:(/3+ 7y coth [2(ﬁ+ 1)]}
2 *
Pe= %. (40)

It should be noted that equation (40) at § = 0 was
obtained previously in ref. [4].

5.2. The three-dimensional case

Using equations (33a) the dependence of the mean
Sherwood number Sh = Iy/(4n) on time will be
obtained for a droplet in an arbitrary deformational
shear flow. To the three-dimensional flow field there
corresponds the inequality E, # E, in the expressions
for the components of fluid velocities, equations (36).
It will be assumed, as before, that at first the con-
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centration in the continuous phase is the same and
that later the reaction starts to proceed diffusionally
on the droplet surface.

All calculations will be conducted sequentially fol-
lowing the scheme given at the end of Section 4.

Characteristic equation (27), which determines the
dependence of the curvilinear coordinate 4 on the
spherical coordinates 8, ¢ in view of equation (36),
has the form

2d0  3E;+(E;—
sin20  (E,

E\)cos2¢
—E,)sin2¢

dé. (4l

For the present, consider the flow region in the
first quadrant 0 < 0, ¢ < n/2. The general solution to
equation (41) can be presented in the form

tan’ 0 tan* ¢ sin 2¢ = 4
where
k= 3E,/(E,—E))

and A is an arbitrary constant. The dependence of the
curvilinear coordinate 4 on & and ¢ is obtained by
setting in the general solution that 4 = 4

E,+E,

K=3E,—E2'

4 =tan® 0 tan® ¢ sin 2¢, (42)
Here, for representing the exponent «, the third com-
ponent of the metric tensor was excluded with the aid
of the equality E, = — E, — E, (see the first equation
in system (36)).

Figure 2 depicts the qualitative behaviour of the
limiting streamlines on the droplet surface in the first
quadrant 0 <0, ¢ < n/2; the value of the new
variable, equation (42), varies within the range from
zero to infinity.

Integrating characteristic equation (26) for par-
ameters (37)

cos @ _sin2¢d¢ E, +E,

sinf  k+cos2¢’ K=3E,—-E2 “3)
for another curvilinear coordinate 5 gives
1 = sin® O(x +cos 2¢). (44)

The integrals will be calculated which enter into
equation (18) for the time-similar variable z. To this
end, the last equations in system (32) will be employed
and the equality ¢4i/¢0 = 4i/sin 20 resulting from
equation (42) will be taken into consideration. This
will yield

r\/g’d B+l r 2d¢p  B+1

f "= E—E.) sn2¢ E —E

j Ve -£,

32 (/3+1)

i TP E\-E,
xf {sm'()sm' 20} sin2¢ d¢ = 32(ﬂ+1)

In tan ¢
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y(x+ }] 2(1 __),)x~ 1 d_V

sm:dz
y J [ (4s)

/- 3

y(wp H2 + ;(l _y)(u— Iy Z]

The use of these expressions for the variable z,
equation (18), gives

__ELE_J" (5. 7) dy
CTREED f, 2P

Q(y ;) N y('uv-l),l(l_y)x—l
s /- N 3
[y(x+ 1) 2+ g(l _y)(k— 1] 2]

)

EI—EZ !
B+ t>} . (46)

To formulate equations (46), the notation
w(w) = sin? T(w) (see equations (18) and (19)) was
employed and account was taken of

B+1
E| Eﬂ

~ E—E,
wow) = {1 +exp (2 Bi

= {1 +cot? ¢ exp (2

w=t—- In tan ¢.

The mean Sherwood number Sh = I;/(4n) is cal-
culated at A = oo from equation (21a) in the inte-
grand of which the consequent transformations n —
¢ —sin? ¢ were performed with respect to the first
variable of integration in view of equations (29)-(31)
(in much the same way as the second integral in equa-
tion (45) is calculated). Use was also made of the fact
that the integral diffusional flux to the part of the
surface considered constitutes 1/8 of the total flux.
The indicated procedure leads to the following
expression for the mean Sherwood number :

l 2 _1 1/2
Sh(t) = (2 )3/2 {[2(1+0‘+0’2)]l’2}
5 J‘* J'Q(x,;.) dx di @
o Jo J(e(t,x, 4)
e(r,x,4) = j O(y,4) dy
jp(x, ')
" _ x
P ) = =0 exp 20)
oo ET-Er __aJ?
STgET v T DB
_Er 3 l+o
“=E "7,
J$=(EJEY)'? = 2EY+E+EFEN]".

Here, the superscript ‘** corresponds to dimensional
quantities, the function Q is determined in equation
(46) and the modified Peclet number Pe,, is introduced
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F1G. 3. The normalized mean Sherwood number vs dimen-
sionless time for a spherical droplet in a plane shear flow.

according to the second invariant of the matrix of
shear coefficients just as it was done in refs. [5, 7, 8].

When ¢ — o0, p— 0 and equations (47) go over
into the results of ref. [8] which correspond to the
established mass transfer regime.

Figure 3 shows the normalized mean Sherwood
number Sh/Sh, per spherical droplet in a plane shear
flow at £% = 0 (the respective flow field is three-di-
mensional, see equation (36)) calculated numerically
based on formula (47). Here Sh, = 0.615,/(Pe,)
is the mean Sherwood number corresponding to the
steady mass exchange of the droplet with the plane
shear flow [8].

6. AN APPROXIMATE EQUATION FOR THE

MEAN SHERWOOD NUMBER IN THE CASE

OF ARBITRARY FLOW ABOUT DROPLETS,
BUBBLES AND SOLID PARTICLES

An approximate equation will be obtained to cal-
culate the mean Sherwood number for unsteady mass
exchange of droplets, bubbles and solid particles in
a developed flow of arbitrary type at large Peclet
numbers.

For this, it is necessary to proceed to the limit ¢t —
co in equation (40). As a result, the mean Sherwood
number is obtained for steady mass exchange of a
spherical droplet in an axisymmetric shear flow

pe |'?
she= e

Excluding the Peclet number from equations (40)
and (48), equation (40) will be presented in the fol-
lowing equivalent form [10]:

(48)

SII 2 112 DI"
§l:- {coth (n Sh} 1)}'*, t= a

(49)

where t = ¢/ Pe is the new dimensionless time.
Now, ‘forgetting’ that the coefficient Sh, in equa-
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by equation (49) (——) with the data obtained by other
authors: @, refs. [1-3]; A, ref [12].

tion (49) is specified by asymptotics of equation (40)
when ¢ — o¢ and determining this coefficient directly
from the solution of the corresponding stationary
problem of convective mass and heat transfer at large
Peclet numbers, equation (49) can be used with suc-
cess for describing approximately the unsteady
diffusion to the surfaces of droplets, particles and
bubbles of any shape in an arbitrary flow.

The fitting of the approximate equation obtained
by the substitution into equation (49) of the cor-
responding stationary value of [11]

2P |'? al,
Shr*[m:’ » Pe="p"

to the results of refs. [1-3] shows that in the case of
unsteady mass exchange of a spherical droplet with
the developed translational Stokes flow the maximum
error of equations (49) and (50) is less than 1%. In Fig.
4 the curves corresponding to equations (49) and (50)
and to the results of refs. [1-3] do not virtually differ
(it should be remembered that the results of refs. [1-
3] for the mean Sherwood number are expressed by a
fairly complex integral which cannot be presented in
a convenient analytical form of the kind of equation
(49)).
Substituting into equation (49) the quantity {11]

al,,
D

(50)

Pe =

Sh, = 0.624Pe' >, (51)
gives an approximate equation for calculating the
mean Sherwood number in the case of unsteady mass
transfer to a solid spherical particle in a developed
translational Stokes flow. The maximum difference
between equations (49) and (50) and the approxi-
mation [12] to the numerical-analytical solution of
a similar problem [13] constitutes less than 2% (see
Fig. 4).

Recall that equation (49) is exact in the diffusion
boundary layer approximation for unsteady diffusion
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Table 1. Comparison of the mean Sherwood number predicted by equation (49) with the data of other authors for different
cases of flow about spherical droplets, bubbles and solid particles

Type of particles Kind of flow Method of solution Error (%) Reference
Droplet, bubble Axisymmetric shear flow Analytical, DBLAt 0 &)
Droplet, bubble Translational Stokes flow Analytical, DBLA 0.7 (1. 2]
Bubble Laminar translational flow Analytical, DBLA 0.7 2.3]
at large Reynolds numbers
Particle Translational fiow of Analytical, DBLA 0.7 [2.3]
ideal inviscid fluid
Solid particle Translational Stokes flow Series expansion + 1.4 [12]
approximation
Droplet, bubble Three-dimensional shear Analytical, DBLA 1.8 Present work
Stokes flow
Droplet, bubble Flow formed due to the Analytical, DBLA 0 Present work
presence of electrical field and [14]
Solid particle Translational Stokes flow Finite-difference 4 [13)
numerical method
(at Pe = 500)

+ DBLA, diffusion boundary layer approximation.

to a spherical droplet in an axisymmetric translational
flow. Comparison with the predicted data presented in
Figs. 3 and 4 shows that the error of the approximate
equation (49) in the case of a plane shear (corresponds
to the three-dimensional flow field, equation (36), at
E, = 0) constitutes less than 1.8%.

In a similar fashion approximate equations can be
also obtained for other non-stationary problems. For
example, using the auxiliary quantity (7]

a’J*

J? .
o5 JE= (B

Sh, =09Pe!*, Pe, =
in equation (49) makes it possible to describe the
process of the establishment of mass transfer to the
surface of a spherical solid particle in an arbitrary
deformational linear shear Stokes flow (in this case
the fluid velocity components are determined by equa-
tions (35) at § = o). Moreover, the substitution into
equation (49) of the auxiliary value of the mean Sher-
wood number Sh, = (2Pe/n)" 2, which corresponds
to a steady process of diffusion to a sphere in a poten-
tial translational ideal (inviscid) fluid flow, leads to a
very insignificant error (<1%) as compared with
exact results {2, 3].

Table 1 (see also Fig. 4) presents the comparison of
the mean Sherwood number predicted by equation
(49) with the data of other authors obtained for
different cases of flow around spherical droplets, bub-
bles and solid particles.

It should be noted that equation (49) can also be
used to calculate unsteady mass transfer of droplets,
bubbles and solid particles of non-spherical shape. In
this case the mean Sherwood number should be
defined as the ratio of the dimensionless total (inte-
gral) diffusional flux to the dimensionless particle sur-
face area. Then the approximate equation (49) will
ensure the correct asymptotic result at small and large
values of the dimensionless time z.

7. PROBLEMS OF STEADY-STATE MASS
EXCHANGE BETWEEN DROPLETS, BUBBLES
AND SOLID PARTICLES AND A FLOW IN THE

PRESENCE OF VOLUMETRIC REACTION

Consider the developed mass exchange between a
spherical particle (droplet) of radius a and a fluid flow
when the substance diffusing from the particle surface
undergoes the first-order chemical transformation
with the rate W = KC, in the external phase volume
where C, is the concentration, K the constant of the
volumetric chemical reaction rate.

In dimensionless variables in the spherical coor-
dinate system r, 8, @, fixed with respect to the particle,
the process of mass transfer in the fluid is represented
by the following equation and boundary conditions:

Pe(vW)¢ = AG—k¢ (52)
r=1, ¢=1 (33)
rowx, ¢=-0
¢=C,/C, Pe=aUD, k=a’kKD (54)

where C, is the concentration on the particle surface, v
the fluid velocity distribution considered to be known
from the solution of the corresponding hydrodynamic
problem.

For solving the stationary problems of convective
mass exchange of droplets and particies with fluids
in the course of the first-order volumetric chemical
reaction, it is convenient to use the results obtained by
solving the corresponding non-stationary problems
without volumetric reaction. To see this, consider the
equation

;—: +Pe(wW)e = Ac (55)

under initial and boundary conditions



1=0.c=0; r=1l,c=1; rox,c—»0 (56)

where v is the fluid velocity vector corresponding to
the stationary flow field.

Applying the Laplace—Carson transformation
(with the actual parameter k) to equations (55) and
{56)

¢ = kj‘z exp (—krt)cdr (57)
0

the stationary problem in the presence of the first-
order volumetric chemical reaction, equations (52)—
(54), is obtained.

[t follows from equation (57) that the mean Sher-

wood number
1" . cé
J sin O(Aw> do
o Crj=

which corresponds to the solution of problem (52)-
(54). can be expressed in terms of the auxiliary Sher-
wood number S/ determined by solving non-station-
ary problem (55), (56) in the following fashion :

Sh=—

(SN

Sh= kj exp (—kt1)Sh dr. (58)
[}]

A useful assessment will be obtained which will be
needed in what follows. Assume that Sh is the mean
Sherwood number corresponding to the exact solu-
tion of auxiliary problem (55), (56) and Sh,, is the
approximate expression for the Sherwood number the
crror of which is 4, i.e.

|Sh—Sh,,| < 6. (59)

Applying the Laplace~Carson transformation to
the difference Sh— Sh,, in view of equation (59) yields
the inequality

€

Sh—Sh,, = kf exp (—kt)(Sh— Sh,,) dt

0

<5kﬁexp(—kz) dr =6 (60)

0

where Sh and .ﬁ‘,p are the exact and approximate
values of the mean Sherwood number, respectively,
which correspond to the solution of the stationary
problem with the first-order volumetric chemical reac-
tion, equations (52)-(54). Similarly it can be found
that Sh,, — Sh < J. Taking into account equation (60),
this yields the inequality

|Sh—Sh,,] < 9. (61

The assessment (61) shows that, having obtained a
sufficiently good approximate relation for the auxili-
ary Sherwood number in the non-stationary problem
by applying the Laplace-Carson transformation, it is
possible to get a good approximate expression (with
the same precision) for the mean Sherwood number in
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Fi1G. 5. The mean Sherwood number vs the dimensionless
reaction rate constant: ——, calculation by equation (62);
————— , calculation by equation (64): x x x x x, ref. [16].

the stationary problem with the first-order volumetric
chemical reaction.

Taking into account the aforegoing, use will now
be made of the results of Section 6 in which the
diffusion boundary layer non-stationary problems
were considered.

Equation (49) will be employed as the auxiliary
mean Sherwood number.

Applying the Laplace-Carson transformation to
equation (49) an approximate solution will be
obtained for a series of corresponding stationary
equations, equations (52)—(54), with the first-order
volumetric chemical reaction in the form

Sh_ F(L) )
Sh.,  \Sh}
where the function Fis prescribed by the integral
F(x) = xj exp (—xt)[coth (n7)]" 2 dz. (63)
0

In equation (62) the quantity Sh, corresponds to the
mean Sherwood number in the absence of volumetric
chemical reaction, i.e. at k¥ = 0. (In writing equation
(62) allowance has been made for the equality
Sh., = Sh,, where the quantity Sk, = lim,_, Sk cor-
responds to the developed diffusion regime in non-
stationary problem (55), (56) and the quantity
Shy = lim,_o Sh determines the mean Sherwood
number in problem (52)-(54) at k = 0.)

Approximate equation (62) adequately displays the
structure of the dependence of the mean Sherwood
number on the complex k/ShZ at large Peclet numbers
(in the diffusion boundary layer approximation).
When k — 0, equations (62) and (63) yield the exact
result, i.e. Sh — Shy. In the other limiting case of k —
oo (Pe = const.), the correct asymptotic result, i.e.
that Sh — Jk [5}, is obtained from equation (62). This
equation also ensures an accurate asymptotic result
when Pe — o (k = const.), since in this case Shy —
w0 and Sh — Sh,.
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Figure 5 presents the curves plotted from equations
(62) and (63). The points correspond to the solution
which was obtained for the problem of mass exchange
of a spherical droplet with a translational Stokes flow
by another technique in ref. [16] (see also ref. [6]).

It is important to observe that for the axisymmetric
shear flow around a spherical droplet. equations (62)
and (63) are exact. The maximum error of equation
(62) for some other cases of mass exchange of
droplets, bubbles and solid particles in different flows
in the presence of the first-order volumetric chemical
reaction can be estimated using Table 1, with the
result of Section 6 taken into account. In particular, it
follows from Table 1 that the solution of the three-
dimensional problem on diffusion to a spherical drop-
let in a plane shear flow leads to the relation for the
mean Sherwood number which differs from equations
(62) and (63) by less than 1.8%.

For approximate calculations of the mean Sher-
wood number, it is possible to make use of the fol-
lowing simple expression :

Sh = k coth (\'k/Sh}) (64)
which differs from more complex equations (62) and
(63) by less than 2%. Equation (64) is shown in Fig.
5 by a dashed line.

It should also be noted that the root of the cubic
equation

Sh*—k Sh—Sh} =0 (65)
differs from equation (62) by less than 1% at most.

Thus, it is shown that equations (62), (64) and (65)
can be successfully used for the approximate deter-
mination of the mean Sherwood number in problems
on mass transfer of droplets, particles and bubbles in
different types of flows in the presence of the first-
order volumetric chemical reaction at large Peclet
numbers. Recall that the parameter Sh, corresponds
to the mean Sherwood number in analogous, more
simple problems at £ = 0, i.e. in the absence of volu-
metric reaction.

Remark. For droplets and particles of non-spherical
shape the mean Sherwood number in equations (63)—
(65) is to be determined from the equation Sh = I/,
where [ is the dimensionless integral (total) diffusion
flux per particle, S the dimensionless particle surface
area. In this case approximate equations (62), (64)
and (65) will guarantee a correct asymptotic result in
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three limiting cases: (1) k —» 0 (Pe = const.}: (2) k —
o (Pe = const.); (3) Pe = x¢ (k = const.).
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PROBLEMES TRIDIMENSIONNELS DE COUCHE LIMITE DE DIFFUSION VARIABLE

Résumé— Dans I'approximation de 1a couche limite de diffusion, on obtient une solution analytique exacte
pour le probléme de P’échange convectif variable de masse entre une gouttelette (bulle) sphérique et un
écoulement cisaillant arbitraire, avec un champ de vitesse non perturbé décrit par un tenseur symétrique
des déformations. On établit la dépendance du nombre de Sherwood vis-a-vis du temps. On présente une
formule approchée simple pour le calcul de I'échange de masse pour des gouttes et des particules solides
avec un écoulement arbitraire permanent, On considére le probléme stationnaire d'échange de masse entre
une gouttelette et un écoulement cisaillant lin€aire, en présence d’une réaction chimique du premier ordre.
On suggére une équation pour calculer le nombre de Sherwood pour une gouttelette ou une particule de
forme arbitraire et pour un type quelconque d'écoulement 4 grand nombre de Péclet dans le domaine entier
des constantes de vitesse de réaction.

DREIDIMENSIONALE GRENZSCHICHTEN MIT INSTATIONARER DIFFUSION

Zusammenfassung—Bei Niherungsbetrachtungen fiir Diffusionsgrenzschichten ergibt sich eine exakte
analytische Losung fiir das Problem des instationéiren konvektiven Stoffaustauschs zwischen einem kuge-
ligen Tropfen (Blase) und einer beliebigen dreidimensionalen linearen Scherstromung. Das ungestorte
Geschwindigkeitsfeld ist durch einen symmetrischen Schertensor gekennzeichnet. Es ergibt sich die Abhin-
gigkeit der Sherwood-Zahl von der Zeit und der Peclet-Zahl. Eine einfache Niherungsgleichung fiir die
Berechnung des instationdren Stoffaustauschs von Tropfen und Feststoffpartikeln mit einer beliebigen
stationdren Strémung wird vorgestellt. AuBerdem wird das stationdre Stoffiibergangsproblem zwischen
einem Tropfen und einer linearen Scherstrdomung in Anwesenheit einer volumetrischen chemischen Reak-
tion erster Ordnung betrachtet. Es wird eine Gleichung vorgeschlagen zur Berechnung der Sherwood-Zah!
fiir einen Tropfen oder ein Partikel beliebiger Form und fiir jede Strdmungsart (groBe Peclet-Zahlen) iber
den gesamten Bereich von Reaktionskonstanten.

TPEXMEPHBIE 3AJAYH HECTAUIMOHAPHOI'O JH®O®Y3MOHHOI'O NMOrPAHHYHOIO
clios

Amworamus—B npubnmxenrn anddy3HOHHOrO NOrpaHHYHOTO CJIOA MOJYHYEHO TOYHOE AHATHTHHECKOE
peuIcHME 3aHadH O HCCTAUHOHAPHOM KOHBEKTHBHOM MaccoobmeHe chepudecko#t kammu (nmyswps} ¢
NPOH3IBONBHBIM TPEXMEPHBIM AHHEHHELIM COBHIOBBIM NOTOKOM, HEBO3MYLICHHOE TONIE CKOpoCTelk KOTO-
POro 3anaercs CHMMETDHYHBIM TeH3OpOM caBura. Onpenenexa sapucumocTh uucna [llepsyna ot
spemeHH H uncna [lexne, Ilpusenena npocras npuGnwxenHas popMyna /UM pacieTaa HHTCHCHBHOCTH
HECTRLMOHAPHOTO MaccooOMeHa kanei» M TBEPABIX YACTHI C TPOM3BOJLHLIM YCTAHOBHBIUMMCH
noToXOM. PaccMOTpeHa CTalMOHapHAN 38Ka4a O MacCOOOMEHE KalUIH B NHHEIHOM CIXBHIOBOM NOTOKE
npu nporexanun oGbemuolt xummueckol peaxumu nepsoro nopsaxa. Ilpemnoxena dopmyna, n03-
BOAIOWIAN BRIYMCANTEL uMcno llepsyna Ha Kammio B MaCTHUY NPOH3BOJIbHOA dopmsl ¥ moboro Tuma
Teverns upy Sonswmx aucnax [exse Bo BoeM OMana3one HIMEHEHHA KOHCTAHTH CKOPOCTH PEaKLHM.



